Rectangular layouts and contact graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orientation-Constrained Rectangular Layouts

We construct partitions of rectangles into smaller rectangles from an input consisting of a planar dual graph of the layout together with restrictions on the orientations of edges and junctions of the layout. Such an orientationconstrained layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts may be listed in polynomial time per layout.

متن کامل

Track Layouts of Graphs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Figures . . . . . . . ....

متن کامل

Inner Rectangular Drawings of Plane Graphs: Application of Graph Drawing to VLSI Layouts

A drawing of a plane graph is called an inner rectangular drawing if every edge is drawn as a horizontal or vertical line segment so that every inner face is a rectangle. An inner rectangular drawing has some applications to VLSI layouts. In this talk we show that a plane graph G has an inner rectangular drawing D if and only if a new bipartite graph constructed from G has a perfect matching. W...

متن کامل

Layouts of Expander Graphs

Bourgain and Yehudayoff recently constructed O(1)-monotone bipartite expanders. By combining this result with a generalisation of the unraveling method of Kannan, we construct 3-monotone bipartite expanders, which is best possible. We then show that the same graphs admit 3-page book embeddings, 2-queue layouts, 4-track layouts, and have simple thickness 2. All these results are best possible.

متن کامل

On Linear Layouts of Graphs

In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A k-stack (respectively, k-queue, k-arch) layout of a graph consists of a total order of the vertices, and a partition of the edges into k sets of pairwise non-crossing (respectively, non-nested, non-disjoint) edges. Motivated by numerous applications, stack layouts (also call...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Algorithms

سال: 2008

ISSN: 1549-6325,1549-6333

DOI: 10.1145/1328911.1328919